柳晋阳
3、情感态度与价值观目标:感受代数与几何问题的相互转换。体会品面直角坐标系在解决实际问题的作用,培养数学学习兴趣。
游戏导入:上一节课我们学习了有序数对,大家学习积极性很高,今天老师先考考你们, 看你们掌握了多少。
我们将教室里的座位分为八列七排。a排b号记做有序数对(a,b),同学们先找准自己的数对号。听老师对,若是你自己的数对号,就快速站起来。反应太慢和站错了都算失败,扣一分;反之加一分。最后以组为单位,比比哪组得分最高。
课本例子:我们知道数轴上的点可以用一个数来表示,这个数叫做这个点的坐标。例如点A数轴上的坐标是-4,点B数轴上的坐标是2;我们说坐标是3.5的点,也可以在数轴上唯一确定。
教师提问1:类似于数轴确定直线上点的,能不能找到一种方法来确定平面内点的呢?平面内给出任意点A、B、C、D,我们怎么确定这些点的
得出结论:我们可以在平面内画两条相互垂直、原点重合的数轴,组成平面直角坐标系,水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上为正方向;两坐标轴的交点为平面直角坐标系的原点。
那有了这样的平面直角坐标系,平面内的点就可以用之前学的有序数对来表示了。例如:由A分别向x轴和y轴作垂线。垂足M在x轴上的坐标是3,垂足N在y轴上的坐标是4,我们说A的坐标是3,纵坐标是4,有序数对(3,4)就叫做A的坐标,记作A(3,4)
得出结论:原点的坐标是(0,0),x轴上的点的坐标的纵坐标为0;y轴上的点的坐标的横坐标为0。
师生互动:与学生一起回忆平面直角坐标系的各部分的意义,平面内的点怎么对应坐标,以及坐标轴上的点的坐标特点。
在黑板上贴出四张事先准备好的纸质坐标格子,在标出任意的ABCDEFG等点,每组我点一个按坐标序列对,对应的同学上黑板,来描出各点的坐标。对一个加一分,错一个扣一分,得分相同的看用时,时间短者胜,过程中下面的学生不能提示,提示一次扣2分。比赛看哪组学生代表得分最多。
教师活动:规范课堂气氛,公平的评判,对于表现好的小组代表予以表扬,表现稍逊的学生不要气馁,给予鼓励,争取下一次可以获胜。
思考平面直角坐标系中坐标与点的对应关系,如何由坐标值确定点的。下节课我们会探讨这个问题。